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A direct-solution scheme for numerically solving the 3-dimensional Poisson’s problem with 
arbirrariiy shaped boundaries V. (LVd)-S on Q. C,d+ C,n’(;iV4)= C! on iiR, has been 
developed bp using a boundary-fitted coordinate transformation. The scheme also used the 
technique of decomposing the closed domain Q into several hexahedron subdomains and rhen 
overlapping neighboring hexahedrons to deal with complicated geometries. A large system of 
linear equations derived from discretizing the Poisson‘s equation was solved by using a bicon- 
jugate gradient method with incomplete LC’ factorization of the nonsymmetric coefficient 
matrix as preconditioning. The convergence behavior of the different domain decompositions 
was demonstrated for a numerical experiment. Application to the electrostatic field problem in 
the electron gun of a color picture tube confirms that the present numerical scheme should 
provide an ekient and convenient tool for solving many important large-scale engineering 
problems. 1 19% ,Acadcmlc Press. Inc. 

I. 1~T~0Du~T107-4 

The numerical solution of the elliptic Poisson’s equation is required for many 
important engineering problems including electrostatic field problems. thermal con- 
duction problems. and flow problems for velocity potentials of pressure fields. 
Various numerical techniques have been developed; among these the finite dif- 
ference method is the most straightforward and widely used. But this method needs 
some interpolation between grid points for complicated boundary shapes with 
strong curvature or slope discontinuities, which may introduce significant numerical 
errors. The finite element method, on the other hand, has geometrical advantages 
for matching complicated boundaries. but it requires considerable experience and 
time to divide the field into finite elements and concentrate the elements in some 
specified regions without using a preprocessor for grid generation, 

Another approach to deal with geometrical complexities is the use of a boundary- 
fitted coordinate transformation technique [I]. This technique is based on an 
automated numerical generation of a curvilinear coordinate system having a coor- 
dinate line coincident with each boundary of the arbitrarily shaped domains. Bur 
when dealing with geometrically complicated 3-dimensional domains, the 
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generation procedure becomes more complex and has less flexibility in adapting to 
a broad variety of geometries. 

This paper presents a new direct-solution scheme for the 3-dimensional Poisson’s 
equation with arbitrarily shaped boundaries. The scheme is based on the technique 
of decomposing the complicated closed domain into a set of overlapping 
hexahedron subdomains, each of which has six curved or plane surfaces. Each sub- 
domain grid is generated independently by the boundary-fitted coordinate transfor- 
mation technique [a]. It also uses an efficient solution technique for a large system 
of linear equations derived from discretizing the Poisson’s equation. An outline of 
the solution scheme and some numerical results are described in the following sec- 
tions. 

2. METHOD 

2.1. Boundary-Fitted Coordinate Transjbrrnation 

The coordinate transformation technique used in the present study is based on 
the method developed by Mastin and Thompson [3]. The transformation from the 
physical space (x, JJ, z) to the transformed space (r, v], i) must be one of the 
solutions of the equations 

(la) 

(lb) 

subject to Dirichlet boundary conditions. The source functions P, Q, and R are 
functions with control grid spacing. 

Since all numerical computations are performed in the transformed space, the 
dependent and independent variables must be interchanged in Eqs. (1 j. This results 
in the elliptic system of quasilinear equations 

8X al.\- a5 a% 
ali-@+ff22~+a,3 a;' -+fff,,-- 

at at1 

(2b) 
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Coefficients ajk are defined as 

Oljk’ i bwzjflmk- (3) 

??I = 1 

where ,!I, is the cofactor of the (r?z,j) elements in the matrix, 

And J denotes the Jacobian determinant of the inverse transformation, 

2.2. Transformation of Poisson’s Equation 

The Poisson’s equation in the physical space (s, )‘,I) is given by 

(6) 

with a general form of the boundary conditions 

Here, /I is a given space-dependent material coefficient and n is the unit-outward- 
normal vector on the boundary. Coeffkients C1, C2, and C3 can be chosen to 
produce Dirichlet, Neumann, or Robbin boundary conditions. 

In order to perform computations in the transformed space, Eq. (6) must be 
transformed such that (5, ye, [) are the independent variables. The following integral 
form of Poisson’s equation applied to the volume element v shown in Fig. 1 is 
transformed to preserve the conservation properties of the original equation (6), 
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FIG. 1 Calculation cell detined by curvilinear coordinates in a physical space 

By using the Gauss divergence theorem, the left-hand side of Eq. (8) can be written 
as follows, 

I J (N&.ndS= [(iV~j.n”‘nS(‘)]c+ - [(;IV#)~n’:)dS(~)]t- 

+ [OJ#). n”j’ 4S(rr)]q, - [(/zoq5). n”” dSv’],- 

+ [(AVq5). n(;’ dS’c’]c+ - [(/lVq5). ncr) dS(c’]cm (9) 

where the subscripts t+, etc., indicate evaluation on the surfaces of the volume 
element v’, the area elements on the surfaces are 

4,s”’ = & 4’14l (10aj 

4S’1’= & d[ 45 (lob) 

4P= & 45 4r1 (1Oc) 

and the normal derivatives are 

(114 

The right-hand side of Eq. (8) becomes 

S dV= SJ4{ 4~ A<. 
V 

(12) 
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Using Eqs. (8) through (12) with a grid spacing of At = dr] = d; = 1, the equation 
applicable in the transformed space can be obtained as follows, 

where all of the coefficients are calculated as part of the coordinate transformation 
and are known quantities. 

The boundary conditions of Eq. (7 j must also be transformed to the (<? I?, cj 
space. Since all the boundaries coincide with the <-, !I-, or [-constant plane, the 
transformed boundary conditions can be represented using Eqs. (11 j as follows. 

for <-constant r, or fz plane, 

for v-constant I’, or r4 plane. 

for i-constant r5 or I-, plane, where r, (i= I, Z,..., 6) are the six boundary surfaces 
as shown in Fig. 2. 

FIG. 2. Boundary surfaces of a hexahedron. 
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FIG. 3. Computational grid structure in a transformed space. 

2.3. Discretization oj’ Poisson’s Equation 

The transformed Eq. (13) with the boundary conditions (Eqs. (14)) is solved 
numerically in the (4, v], i) space by using a finite difference approximation with a 
grid spacing of At = dr] = Ai = 1. Figure 3 shows a computational grid structure in 
the (~$4, [) space. While the (x, I’, Z) coordinates are specified at the corners of each 
cell, the variable 4 in Eq. (13) is computed at the cell center. Therefore, the coef- 
ficients 0~~~ and the Jacobian J in Eq. (13 j must be evaluated at the surfaces of the 
cell by averaging the values calculated at the four neighboring corners. 

The boundary conditions (Eqs. (14)) are discretized using the hypothetical cell 
center outside the boundaries. For example, the expression at the boundary 
surface f-, shown in Fig. 4 becomes 

+u 
I2 

‘~!2.l+1,k-bb,i- l,k+C(l)~ri?,j,k+l-~:.‘2.j,k-i 

2 2 
=c 

3 (15) 

(-constant boundary(r, surf.@ 

FIG. 4. Computational points on a <-constant plane for boundary conditions. 
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where diik is the value of C$ at the cell center (i,j, k). Here the first-order partial 
derivatives with respect to q and i, @/a~, and @/a[, are approximately calculated 
at the i = l/2 plane using the values precalculated by the iteration process described 
in the following section. (The superscript 0 denotes the known value.) The boun- 
dary conditions at the other surfaces are expressed in the same way. These 
expressions are incorporated directly into the difference formula derived from 
Eq. (13) to eliminate 4 at the hypothetical cell center. 

Figure 5 represents the relevant calculational points in the finite difference for- 
mula. Instead of the familiar seven-point difference formula in the orthogonal coor- 
dinate system, the 19-point difference formula is derived in the boundary-fitted 
coordinate system. This is due to the cross-derivative terms of Eq. (13) such as 

3 
i: 1 iyI <+= 

~i,j+I,k+~i+I.j+l.k-~i.j-i,k-#i+I,,~!.k 

4 
(16) 

The 19-point difference formula increases the number of non-zero elements in the 
coefficient matrix of a large system of linear equations, which causes increased com- 
putational time and storage capacity. Therefore, in the present study, the value of 4 
at the 12 computational points shown in Fig. 5 are treated as known values using 
the precalculated ones in the previous iteration, which results in the seven-point dif- 
ference formula 

a$“qS. 1. 1. k-, +aj$)&. .--I k +aj$‘& l,j k +a$)#ijx- ‘J 3 I 1 

+a$)& t -k+aj:k)q5 I+ ./. r,.,+t.k+aj~‘~j..i.,+t=b,j, (17) 

where the coefficients a$ (n = 0, 1, 2 ,..., 6) and the known terms h,, are shown in 
the Appendix. The boundary conditions are taken into account by the coefficients 
a$:’ and the known terms 6,. 

The difference formula (17) is good approximation for near-orthogonal grid 
structure because the coefficients c(~ (i #j) in the cross-derivative terms are much 

a: 

l : 

Computatlona! pants for the 

I-point difference formu!a 

Additional computational points for 

the 19-pomt difference formula 

FIG. 5. Computational points used in difference formula. 
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Smaller than &&, but it requires more iterations with the distortion of grid struc- 
ture. In the present method, however, the know term in Eq. (17) is updated by the 
other kind of iteration needed for domain decomposition (see Sect. 3), so that the 
distorted grid structure does not always lead to large increase in computational 
time. 

2.4. Large System of Linear Equations 

The discrete approximation to Eq. (13), using finite difference formula ( 17), 
results in a large system of linear equations 

> (18) 

\ \ 4lvML _ 
or, in brief, Ad = b, where the unknown variables biik (i = 1, 2 ,..., N; j= 1, 2 ,..., M; 
k= 1,2,..., L) are arranged in the following order 

The coefficient matrix A is a regular sparse matrix and its order is N x Mx L. Note 
here that the matrix A is also non-symmetric because of the relations 

ai? k # uf2) 
I+ I.j, k, 

aj..3/ k # aC4! _. L.J+ 1, k, 
0;‘) k # a!6! / I ~.,.k+ll (19) . > 

and this property is due to both the non-orthogonality of the boundary-fitted coor- 
dinate systems and the approximated seven-point difference formula. 

In the present study, the coefficient matrix A is approximated by an incomplete 
LU decomposition K= LDU, where L and U are lower and upper triangular 
matrices and D a diagonal matrix. The matrices L and U have the same sparsity 
pattern as the lower and upper triangular parts of A, respectively, except for the 
three diagonals adjacent to and between the two outermost diagonals. The 
matrix K-IA has eigenvalues all close to 1.0, so that Eq. (18) multiplied by K-‘, 
K-‘&3 = K-lb, can easily be solved by the biconjugate gradient method [4]. But 
this method requires about 1.7 times more computer storage capacity than the 
incomplete Cholesky conjugate gradient method [S, 61, which is widely used for a 
large symmetric matrix. Therefore, domain decomposition to reduce the order of a 
coefficient matrix is essential for the calculation of a large system of linear 
equations, as well as introduction of the seven-point difference formula (17) to 
decrease the number of non-zero elements in the matrix. 
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2.5. Domain Decomposition and Overlapping Technique 

This technique is a variant of the well-known Schwarz alternating procedure [?I. 
A complicated 3-dimensional domain is divided into several hexahedron sub- 
domains, each of which has six curved or plane surfaces. For each subdomain, the 
curvilinear coordinates (x, y, Z) and the variable 4 are calculated by solving Eqs, (2) 
and (13), respectively, and then they are joined with results for other subdomains to 
form composite solutions of the coordinates (x, J, Z) and the variable d, for the 
original domain. 

To ensure the composite solutions remain both continuous and smooth across 
the boundaries, an overlap of the solutions is adopted between any two adjacent 
hexahedrons. Figure 6 illustrates the procedure for overlapping the solutions. Since 
the staggered grid structure is used for the calculations of the coordinates and the 
variable 4, two kinds of overlapping are adopted in the present numerical scheme. 

For the coordinate calculation, an overlap of two grid surfaces is used as shown 
in Fig. 6a. The inner grid coordinates are calculated using the Dirichlet boundary 
conditions on the six surfaces of a hexahedron. The calculated coordinates on the 
inner overlapped surface are transferred to the outer surface of the neighboring 
hexahedron, and the inner grid coordinates are calculated for the neighboring one. 
This procedure is repeated for all hexahedrons until the convergence requirement is 
met for all grid points. 

For the calculation of the variable 4, on the other hand, three computational SW- 
faces are overlapped as shown in Fig. 6b. The calculated values on the overlapped 
innermost surface are transferred to the hypothetical surface outside the neighbor- 
ing hexahedron. Although this overlapping scheme needs double calculations on the 
midplane of the three overlapped surfaces, it does not change the calculationai 
domain for each hexahedron, which makes it possible to apply the same treatment 
to all hexahedrons. (Contrast this with the alternative overlapping scheme shown in 
Fig. 6,~) 

b 

FIG. 6. Procedures for overlapping solutions among neighboring hexahedrons: (a) coordinate 
calculation process; (b) 4 calculation process; (c) alternative calculation process. 
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3. NUMJXICAL RESULTS AND DISCUSSION 

The numerical procedure presented in Section 2 have been incorporated into a 
3-dimensional calculation program POISSON-3D. The program solves the trans- 
formed Poisson’s equation (13) in the transformed coordinate system. The curvi- 
linear coordinates (x, J’, z), the Jacobian J, and the coefficients Q of the corners of 
all cells are calculated by a grid generation program GRID-3D [2] and given to 
the POISSON-3D program. 

The program uses two iteration schemes: the first involves solving the system of 
linear equations (18) using the preconditioned biconjugate gradient method; and 
the second calculates the interaction among the hexahedrons. The known terms in 
the approximated difference formula (17) are updated by the second iteration 
scheme. In the following, these schemes are termed inner and outer iteration 
schemes, respectively. 

In order to examine the convergence process in these iteration schemes, the 
program was applied to a- cylinder as shown in Fig. 7. In this example, the rec- 
tangular-type coordinate system was used to include the influence caused by the 
non-orthogonality of the boundary-fitted coordinate system. The cylinder was 
divided into several hexahedrons overlapping each other to include the interaction 
between the hexahedrons. The calculational conditions are also shown in Fig. 7, 
which resulted in a l-dimensional axisymmetric problem with a bilinear analytical 
solution. The initial values of #J were set to zero in the whole domain. 

The distributions along the two radial directions are compared with the 
analytical solution in Fig. 8. The numerical results had axisymmetric distributions 
and agreed with the analytical distribution within an error of 0.5% in the two direc- 
tions. Figure 9 shows the convergence behavior for one hexahedron in comparison 
with results of SOR (Successive Over-Relaxation) iterative method using the 

b 

B Direction 

- Q = 0.0 at side surface k Direction 

Overlapping region 

S= 1.0 in a cylinder 

.O at bottom surface 

FIG. 7. Calculational conditions and grid structures for convergence test problem: (a) calculational 
conditions; (b) grid structure. 
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(A direction I” Fig 6j ‘i 

Radial distance r/R 

FIG. 8. Comparison between analytical and numerical solutions of 4. 

optimum acceleration factor of 1.3. Each continuous line represents the convergence 
process of the inner iteration scheme, and the sequence of these lines results from 
the outer iteration scheme. It was assumed that the convergence criteria in each 
itmer iteration was one tenth of the residue, IlAd, - 6/l 2/jJbi/ 2, in the first iteration. 
This was due to the fact that the smaller convergence criteria offered no 
improvement for the next inner iteration. In the case of no domain decomposition 
(N = 1), the discontinuity of the convergence process was caused by updating the 
known terms of Eq. (17) in the outer iteration. It should be noted that in the 
sequence of the solid lines (N= 2), the residues were majorized by the terms of a 

100 
i-.... 

Ft 

1 ‘k 
“...., 

10-l .‘._.. -.. ._ . . . . 1 . . . . . . k., “..., ” ‘...,, .‘... . . . -I .... . . . . . . j 
r 

...... : SOR(N=l) 'i 

0 20 40 60 80 100 

Number of iterations 

FIG. 9. Convergence behavior of POISSON3D program. 
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geometric series with a ratio of about 0.3, which is characteristic of the Schwarz 
alternating procedure [7]. 

In Table I the convergence results are summarized. While the total number of 
iterations increased with the number of hexahedrons, the computational time 
required for each hexahedron decreased with the number of grid points in the 
hexahedron. This resulted in the relatively small increase in total computational 
time by about 65% even for the case of six hexahedrons. On the other hand, the 
core memory decreased in inverse proportion to the number of hexahedrons, which 
can overcome the difficulties related to dimensionality of 3-dimensional complicated 
geometries. 

In order to demonstrate the applicability of the GRID-3D/POISSON-3D 
system, it was applied to the axisymmetric electron gun of a color picture tube. 
Figure 10a shows the electrode geometry and voltage of the prefocus and main lens 
sections. As shown in Fig. lob, these sections were divided into 27 subdomains, 
which provided for a decrease of one-sixth in the needed CPU memory as com- 
pared to a case without domain decomposition. Figure 1Oc shows the perspective 
projection of the generated grid structure. The total number of grid points was 
60400. Using P, Q, R functions (Eqs. (1 )), the grid was concentrated toward the 
center of the axis and the cathode in order to increase accuracy along the electron 
beam trajectories. While the maximum grid size (400 pm) appears in the main lens 
section, the minimum one (10 pm) appears near the cathode. 

The potential distribution and the electron beam trajectories for a case of cathode 
voltage of 100 V are shown in Fig. 10d. The beam trajectories were calulcated by 

TABLE I 

Convergence Behavior of POISSON--3D Program 

Computational time 
Grid structure Core Number of iterations to reduce 

Number of of a hexahedron memory to reduce II4b~llz;ll~llz G lo-’ 
Method hexahedrons IxJxK” (MB) ll~~~-~ll~illhl!z~10~’ (relative) 

SOR 1 15 15 62 3.87 334 2.91 (0.270)’ 
BCG 1 15 15 62 5.69 31 1.00~(1.00) 

2 15 15 32 3.18 85 (43)b 1.41 (0.513) 
3 15 15 22 2.34 131 (44) 1.46 (0.347) 
4 15 15 17 1.93 184 (46j 1.60 (0.269) 
5 15 15 14 1.69 234 (47) 1.63 (0.216) 
6 15 15 12 1.53 271 (45) 1.65 (0.189) 

“2, J, and K are the maximum numbers of grid points in r, q, and [ directions, respectively, for a 
hexahedron. 

b Values in parentheses represent values per hexahedron. 
’ Values in parentheses represent values per iteration. 
d Computational time was 55 s by HITAC M-200H. 
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FIG. 10. Application to electrostatic lield problem in electron gun of a color picture tube: (a) elec- 
trode configuratIon and voltage; (b) subdomain divisions: (c) generated grid: (d) potential and electron 

beam trajectories. 

integrating the equation of motion for charged particles in the electric field. Note 
that the electron beams produce the space charge, which can change the potential 
distribution. Figure 10d shows the converged solution in a self-consistent held. 
Screen spot size was calculated by extrapolating the beam trajectories from the 
main lens exit to the screen. The calculated value agreed with the measured one 
using a photo-multiplier detector within 15% error [S-J. 

4. CONCLUSION 

A direct-solution scheme for numerically solving Poisson’s equation in a 3- 
dimensional domain with arbitarily shaped boundaries has been developed by using 
a boundary-fitted coordinate transformation technique. The Poisson’s equation and 
general boundary conditions were transformed in the simple domain and 
approximated by a 7-point finite difference formula. The 3-dimensional domain of 
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interest was decomposed into several hexahedrons, each of which had overlapping 
regions with each of its neighboring hexahedrons. This technique made it possible 
to deal with a complicated geometry consisting of many components. The large 
system of linear equations derived by discretizing the Poisson’s equation has a non- 
symmetric coefficient matrix and was solved by using a biconjugate gradient 
method with incomplete LU factorization of the matrix. 

On the basis of the scheme, the POISSON-3D computer program was developed 
and combined with the grid generation program GRID-3D. Numerical results 
showed the validity of the present scheme through comparisons with analytical 
results. Application to the electrostatic field problem in a electron gun verified the 
capability and feasibility of the GRID-3D/POISSON-3D system. Based on its 
automatic grid generation, geometric versatility, and small CPU memory, the 
present system provides significant progress towards improved productivity in the 
field of computer-aided engineering (CAE). 

APPENDIX: COEFFICIENTS OF ~-POINT DIFFERENCE FORMULA [Eq.(17)] 

The coefficients c$J (n = 0, 1, 2 ,..., 6) and the known terms b, are given as 

(A. 

(A. lb) 
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where the subscripts are abbreviated such that i + 1 means i + l,j, k. The coef- 
ficients uC2), etc., are expressed in the same way as a”‘. Variables,f,, k,, g,, and di 

are defined as 

l-.,i(;c~+c2$q for i= 1, 

fi = (A.2ai 
0 for i = 1 or overlapping region, 

at a hypothetical point, 

Other variables in Eqs. (A. 1) are defined in the same way. 
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